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A revision of the double-torsion technique for 
brittle materials 
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Serious doubts about the constant-K characteristics of double-torsion specimens have been 
expressed in recent years. However, compliance calibration shows that the energy release rate 
and hence the stress intensity factor are independent of the crack length in this technique. 
Relatively large scattering in the results obtained by the load-relaxation method makes the 
data unreliable. The load-relaxation experiments should be carried out in combination with 
other methods. A theoretical calculation of the load-deformation curve under a constant dis- 
placement rate gives a rough estimation of the stress corrosion index. The subcritical crack 
growth data can be given, in principle, by only one experimental run of the constant displace- 
ment rate method of double-torsion testing. 

1. Introduction 
Subcritical crack growth can be observed for various 
brittle materials such as glass [1], ceramics [2] and 
rocks [3]. The slow crack growth is brought about by 
stress corrosion which produces weak bond structures 
because of stress-aided chemical reactions at the point 
of tensile stress concentration within the material. 
For silicate materials, the reactive agent is water. 
Because subcritical crack growth is known as a source 
of time-dependent fracture of these materials [1-3], 
information about the subcritical crack growth is very 
important in the failure prediction of engineering 
materials and crustal rocks. 

Several fracture mechanics tests for investigating 
subcritical crack growth have been proposed in the 
past twenty years [4]. Among them, the double-torsion 
technique should be one of the most useful methods 
for opaque materials in hostile environments, because 
of its simple loading system, its simple configuration 
of the specimen, easy pre-cracking, and independence 
of the stress intensity factor on crack length. The 
double-torsion method was introduced by Outwater 
and Gerry [5] and Kies and Clark [6]. In the original 
double-torsion test the constant load method was used 
[6], where the load was kept constant and a deflection 
of the plate was monitored. The crack velocity can be 
given, in this method, by the applied load and the 
deflection rate of the plate. 

Evans [7] introduced two other methods, namely 
the constant displacement rate method and the load- 
relaxation method. In the former, the displacement 
rate of the loading point is kept constant. When the 
load increases up to a critical level, the rate of change 
in the specimen's compliance due to the crack's advance 
cancels the increasing rate of load. The load then 
reaches the maximum level and is held constant. The 
crack velocity can be determined from the load of 
the plateau region and the driven rate of the loading 
point. In the relaxation test, the load is raised rapidly 
up to a given point and the loading point is fixed. 
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As the crack grows, the compliance of the specimen 
increases and the load decreases. The crack velocity 
can be determined from the initial load, the temporal 
load and the decreasing rate of load. Thus, in the 
relaxation method the monitoring of only the applied 
load is required. 

As the growth rate V of the crack depends on 
the stress intensity factor K at the crack-tip and 
on environmental factors such as temperature and 
humidity, experimental results are usually collected 
in stress intensity factor-crack velocity diagrams, 
namely K-V diagrams. In the two methods, the con- 
stant load and the constant displacement rate, only 
one point in the K - V  diagram can be determined 
by a single experimental run. On the other hand, the 
relaxation method gives a wide range of data in the 
K - V  diagram, generally from 10 -~~ to 10 -1 msec -~, 
from only a single experimental run. The relaxation 
method has therefore, been used by many authors 
[7-13], while the other two methods have been seldom 
used. A few exceptions are found in Evans and Wieder- 
horn [14], Waza et al. [15], Sane [16], Michalske et al. 

[17] and Costin and Mecholsky [18]. However, using 
the relaxation method for polycrystalline materials, a 
hysteresis in the K - V  diagram has been reported by 
Pletka and Wiederhorn [12] and Ferber and Brown 
[13]. Pletka and Wiederhorn suggested that the stress 
intensity factor should be dependent on the crack 
length. Although there is serious doubt about double- 
torsion testing, such hysteresis has been reported only 
for the relaxation method. We should have another 
look at the other two methods in the double-torsion 
technique. 

2. Specimens 
Materials used in this study are soda-lime glass, 
Murata basalt, quartz andesite and Oshima granite. 
Murata basalt (North-eastern Japan) consists mainly 
of glassy matrix and fine-grained feldspar whose 
mean grain length is about 0.1 mm. Quartz andesite 
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(South-western Japan) consists mainly of glassy 
matrix, fine-grained feldspar and quartz. The mean 
length of the grains is about 0.1 ram. A petrographic 
description of Oshima granite (South-western Japan) 
has been given by Sano et al. [19]. The mean grain size 
of Oshima granite is about 1 ram. They are brittle and 
hard rocks. The uniaxial compressive strengths, for 
example, under a constant strain rate of 10 s sec-~, 
are 380, 300 and 220 MPa for quartz andesite, Murata 
basalt and Oshima granite, respectively. 

3. Experimental procedures 
A schematic representation of a double-torsion speci- 
men is shown in Fig. 1, where the notation of the 
specimen's configuration is also shown. The dimensions 
of the specimens are roughly W = 40, L = 100, d = 3 
and dn = 2.9 mm for soda-lime glass, and d = 1.5 to 
2 and d n =  0.5 to 1.5ram for other materials. The 
guide groove cut in the central part of the specimen was 
set downward in the original double-torsion articles, 
but was set upward in this study according to Pletka 
et al. [8]. Fig. 2 shows an illustration of the double- 
torsion apparatus used in this study. A stepping motor 
drives the micrometer head which can apply the load 
to the specimen. The frequency range of the pulse 
generator used for the stepping motor is from 10 s to 
10 4 Hz. The maximum pulse rate of the stepping 
motor is 3 kHz. The accuracy of the load-cell is 1% of 
full scale. Deformation of the plate was monitored by 
two linear variable differential transformers (LVDT) 
(Schaevitz HCD050). Load and deformation were 
recorded by a X-Y chart recorder. The load was also 
monitored by an analogue-digital converter of 12 bit 
resolution. The maximum sampling rate needed for 
sampling data and recording on to random access 
memories of a personal computer is 40 #sec. Acoustic 
emissions were detected by lead zirconate-lead tita- 
nate discs. After amplification of 50 dB, the event rate 
was monitored by using a discriminator and a counter. 
A threshold level was 30 mV. The crack velocity was 
estimated by using the usual equations as suggested by 
Evans [7] for the constant load and constant displace- 
ment rate methods. In the relaxation method, the 
initial compliance Co, determined from the load- 
deformation curve was used instead of (Bao +D), 
namely 

( d P )  , 
v = - C o P o  -aT 

where a 0 is the initial crack length, P is the applied 
load, P0 is the initial load, t is the time, and B and D 
are constants [7]. 

Figure 1 A 
specimen.  

schemat ic  representa t ion  o f  the double- tors ion  
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Figure 2 An i l lustrat ion of  the double- tors ion  appara tus .  

4. Experimental results 
The hysteresis in the K - V  relation observed in several 
experimental runs of the relaxation test has been 
pointed out by several authors [12, 13]. Except for 
glass, the hysteresis was observed for almost all 
materials used in this study. An example of the 
hysteresis observed on a GH specimen of Oshima 
granite is shown in Fig. 3. GH indicates that the 
crack propagates in a direction normal to the "grain" 
plane, and that the crack opening direction is normal 
to the "hardway" plane. These planes are quarry- 
man's terminology for the planes of anisotropy in 
granites [20], and are characterized by the preferred 
orientation of the pre-existing cracks [21]. Discor- 
dance among the K - V  relations of four experimental 
runs can be seen in Fig. 3. The stress corrosion index, 
n, for the first to the third run is about 70, but the 
index from the fourth run is 32. Atkinson and Rawlings 
[22] found that the stress corrosion index Of Westerly 
granite is 39.1 in air and 34.8 in water, while .the 
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Figure 3 An example  of  hysteresis  in the stress intensi ty fac tor -  
crack velocity d i ag ram observed with G H  O s h i m a  granite.  Da t a  are 
plot ted on double  logar i thmic  coordinates .  G H  indicates tha t  the 
velocity of  the crack p ropaga tes  n o r m a l  to the grain plane and,  
s imul taneously ,  opens  n o r m a l  to the ha rdway  plane.  (o )  1st test, 
([]) 2nd test, (zx) 3rd test, ( e )  4th test. 
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author's estimation of the index of  the same granite 
based on Swanson's data [23] is about 57. Although 
this discrepancy may be due to the anisotropy of  
Westerly granite, it can also be due to the hysteresis 
described above. Does the stress intensity factor 
depend on the crack length, as suggested by Pletka 
and Wiederhorn [12]? 

Compliance calibration tests were carried out for 
various materials. The applied load was raised slowly 
to a given level at which the crack should lengthen 
moderately, and then the load was decreased. The 
crack length was measured optically, and then the 
specimen was reloaded again. The compliance of the 
specimen determined from the load-deformation 
curve is plotted against the crack length. Fig. 4 shows 
the results of the compliance calibration tests for 
soda-lime glass, Murata basalt and quartz andesite. 
As a relatively large hysteresis was observed for rocks, 
the compliance was determined for both the loading 
and unloading parts of the load-deformation curves. 
The linearity of  the compliance against the crack 
length agrees with what Evans [7] had shown. These 
relations can be expressed as 

C = Ba + D (1) 

where a is the crack length, C is the compliance, and B 
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Figure 4 Experimental results of  the compliance calibration for (a) 
soda-l ime glass (b) Murata  basalt and (c) quartz andesite. (O) 
Loading, (O) unloading. 

and D are constants depending on the mechanical prop- 
erties of the materials and the specimen's dimensions. 

Evans [7] showed that the deflection of the plate, z, 
is related to the applied load P by 

z = P ( B a  + D) (2) 

where B and D are the same as in Equation 1 and, 
generally, B > D. Both Equations 1 and 2 show that 
the compliance of the double-torsion specimen relates 
linearly to the crack length. Williams and Evans [24] 
showed that the constant B in Equation 2 and the 
Mode I stress intensity factor, K~, at the crack tip can 
be expressed as 

3Wm 
B -  Wd3G (3) 

[ 3a +_ _u) 
K, = P W m L Wdn d 3 (4) 

where d, dn, W and W m are the same as in Fig. 1. v and 
G are the Poisson's ratio and shear modulus of the 
material, respectively. Using Equation 3, the shear 
modulus can be determined. The results are shown in 
Table I with the shear modulus determined by other 
methods. These moduli are in accordance with each 
other for the same material, which indicates that 
Equations 1 to 3 hold well. 

When the shape of  the curved crack front is con- 
stant during the crack advance and f is a numerical 
constant, the area of the crack surface, A, can be 
expressed as A ~. fadn. The energy release rate, G, is 
expressed as [25] 

G = T \ # a / f d n  (S) 

In spite of the suspicion by Pletka and Wiederhorn [12] 
as noted above, we can easily show, from Equations 1 
and 5, that the energy release rate and hence the Mode 
I stress intensity factor at the crack tip is independent 
of the crack length for double-torsion specimens [26]. 
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Figure 5 An example of the load-deformation curve 
and the event rate of acoustic emissions (AE) for Murata 
basalt under constant displacement rate. It shows a plateau 
region of the applied load, where the acoustic emission rate 
is also constant. An arrow indicates the macro-fracture of 
the plate. When the crack approaches the end of the plate, 
the stress intensity factor and hence the acoustic emission 
rates increase. 

An example of the load-deformation curve observed 
in the constant displacement rate test is depicted in 
Fig. 5, where the event rate of the acoustic emissions 
is also shown. The crack velocity can be determined 
from the load of the plateau region in the figure. In 
this region, the acoustic emission rate as well as 
the applied load is constant, indicating that the 
crack velocity is constant and hence the stress inten- 
sity factor is also constant. When the macrocrack 
approaches the end of the plate, the load decreases 
and acoustic emissions increase. This is because of the 
increase in the stress intensity factor at the crack tip 
due to the interaction between the macrocrack and the 
end of the plate [26]. 

Figs 4 and 5 shows that the stress intensity factor is 
independent of the crack length for double-torsion 
specimens. Why can the hysteresis over several runs 
of the relaxation method be observed? Swanson [27] 
suggested that the time-dependent formation of the 
process zone and/or friction-induced locking between 
the crack surfaces are possible cause(s) of the hysteresis 
for polycrystalline materials. 

Sano [16] showed that the stress corrosion index 
of Oshima granite should be around 30, using the 
constant load method of the double-torsion test. 
Indirect measurement of the index based on the 
influence of the strain rate on the uniaxial compressive 
strength of the same granite also showed that the 
stress corrosion index should be 32 [19, 28]. These 
conclusions agree well with the result of the fourth run 
shown in Fig. 3. However, in the relaxation tests, 

similar results as in the fourth run could be seen only 
when the initial load was sufficiently high and d n was 
small enough. For Oshima granite, the critical width 
of dn was around 1.6 mm, while the mean grain size of 
this granite is about l mm. Swanson [23, 27] found 
that the macrocrack frequently propagates along the 
grain boundaries when the crack velocity is relatively 
low. The probability of locking at the crack faces 
along grain boundaries may be high when d, is some- 
what larger than the mean grain size. This may explain 
why no hysteresis can be observed on soda-lime glass. 

Fig. 6 shows the K - V  diagram of Murata basalt 
obtained by using three different methods. Crosses and 
circles indicate the results of the relaxation method, 
squares indicate the constant displacement rate, and 
triangles denote the constant load. A bar on a square 
symbol shows the stress corrosion index determined 
from the load-deformation curve (for details see 
Section 4). Filled symbols indicate the crack velocity 
in water, which shows that the crack velocity in water 
is higher than in air by two or three orders of mag- 
nitude. This is experimental evidence showing that the 
water acts as a chemical agent in the stress corrosion 
processes of silicate materials [1-3]. 

Although hysteresis was observed in several experi- 
mental runs of the relaxation method, the data for this 
method where the above conditions are fulfilled agree 
well with the data from the constant load and the 
constant displacement rate methods. The stress cor- 
rosion index of Murata basalt is around 27, which 
agrees well with the data of Sano [16]. For Oshima 

TABLE I Shear modulus of various materials estimated by compliance calibration; for comparison, shear moduli determined by 
other methods are also indicated. 

Materials Loading/unloading Shear modulus (GPa) 

Compliance Other methods 

Soda-lime glass In either case 26.1 ___ 0.4 27.3* 

Murata basalt Loading 26.8 + 0.9 
Unloading 27.4 • 0.9 29.2 _+ 0.5 t 

Quartz andesite Loading 29.7 • 1.0 
Unloading 29.7 • 1.0 27.2 • 0.5* 

Oshima granite Loading 24.1 • 3.5 
Unloading 26.4 • 3.5 23.8 4- 0.4 ~ 

* Dynamic modulus 
f Modulus by uniaxial compression test. 
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Filled symbols indicate crack velocity in water. 

granite, the K- V relation by the relaxation tests where 
the above conditions are satisfied is shown in Fig. 7 
with the data of the constant displacement rate tests. 
These data also agree well with each other. The sub- 
critical crack growth data shown in Figs 6 and 7 
should therefore give the intrinsic material property, 
and the data indicating a high value of the stress 
corrosion index as shown in Fig. 3 may be brought 
about by some experimental disturbance. Because the 
relaxation method has the advantage that a wide 
range of  data can be obtained from a single experi- 
mental run, many authors have usually employed 
this method. However, the hysteresis described above 
occasionally makes the data unreliable. The relaxation 
tests should be carried out in combination with one of 
the other methods in order to verify the experimental 
data. 

Fig. 7 also shows the anisotropy of the crack 
velocity within Oshima granite. The crack velocity in 
the GR specimens (Fig. 7b) is much higher than the 
one in the GH specimens (Fig. 7a) by several orders of 
magnitudes at the same stress levels. GH indicates the 
same as in Fig. 3. GR indicates that the direction of 
crack opening is normal to the "rif t"  plane [201. 

5 .  D i s c u s s i o n  

The data from the constant displacement rate test 
of the double-torsion technique do not show any 
hysteresis in the K-V diagram. This method should be 
more reliable than the relaxation test. However, a 
single experimental run has been able to determine 
only one point in the K - V  diagram. Thus many 
specimens and many experimental runs have been 
needed to determine the K - V  relation of the material. 
This could be the main reason why the constant dis- 
placement rate test has rarely been carried out. 

In the constant displacement rate test, the defor- 
mation of the plate, z, is expressed by 

z = ALt (6) 

The subcritical crack growth rate, da/dt ,  can be given 
by [1-3] 

da 
- AK~ ( 7 )  

dt 

Combining Equations 4 and 7, we have 

da 
-- A 2 P  n (8) 

dt 

where A2 = A{Wm [3(1 + v)/(Wdnd3)]t/2} ~ . Differen- 
tiating Equations 2 and 6 with respect to time and 
combining the results, we have 

_ _  da 
dP (Ba + D) + P B  ~ = A l (9) 
dt  

Substituting Equation 8 into Equation 9, and con- 
sidering P ( B a  + D) = A1 t, Equation 9 leads to 

--~ = A1 - B A 2 P  ~+I 

o r  

dP dP dt 
_ _  = - -  ( 1 0 )  
P + A3Pn 1 -- A s P  n+l t 

where A3 = B A 2 / A , .  Integrating Equation 10, we 
have 

l o g P -  log(1 - A3P "+l) = log(t)  + C, (11) 
n + l  
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Figure 7 The stress intensity factor-crack velocity diagram of  Oshima granite obtained by using two methods: (El) constant  displacement 
rate and (O, zx) load-relaxat ion method.  (a) G H  specimens and (b) G R  specimens where G indicates that  the crack propagates  in the direction 
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respectively. 
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where C~ is an integration constant. The load P is 
equal to Pj, when t = 1. Equation 11 yields 

P(1 --  A3P"+]) -I/("+l) = zP~ (1 -- A3P~+I) -1/("+1) 
A1 

o r  

A l P  ( 1 -- A3Pf +1 ,~1/(,+]) 
z = Pi 1 A3P"+~,] (12) 

When Co is the initial compliance, A~ = P1 Co should 
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hold. Then Equation 12 yields 

z = P C  o ( 1 - A3(AI/Co) n+l hl / ( .+ l )  
1 - -  ~ / + zo (13) 

where z0 is a constant depending on the non-linearity 
of the early stage of the load-deformation curve. The 
constant also involves the inelastic deformation of 
the plate produced in.the previous loading cycles. 
Equation 13 expre~es the load-deformation relation 
of the double-lorsion specimens under constant dis- 
placement rate. Note that Equation 13 does not 
hold for the specimens without macrocracks. Before 
this equation is applied, pre-cracking is, therefore, 
inevitably needed. 

When the loading system and the specimen are 
fixed, the variables in Equation 13 are A], A and n. 
The effect of the displacement rate, A1, on the load- 
deformation curve is shown in Fig. 8. The maximum 
plateau region can be predicted theoretically. The 
higher the displacement rate, the higher the maximum 
load, as suggested by Evans [7]. One point in the K - V  
diagram can be determined by the plateau load. 
Furthermore, when the displacement rate is fixed, the 
variables are only A and n. As the K - V  curve passes 
through the point determined by the maximum load, 
parameters A and n are dependent on each other. Now 
the stress corrosion index, n, is the only variable. 
Using Equation 13, theoretically calculated load- 
deformation curves are shown in Fig. 9 with the experi- 
mental load-deformation curve. The parameter n 
is also shown in the figure. In Fig. 9a, the stress 
corrosion index of soda-lime glass ranges from 10 to 
20. This agrees well with the result from double- 
torsion experiments [7] and that obtained from double- 
cantilever-beam tests by Wiederhorn [29]. The stress 
corrosion index of both Murata basalt and Oshima 
granite ranges from 10 to 30, which is in harmony with 
the results described above. In principle, only one 
experimental run by the constant deformation rate 
method can, therefore, determine the full characteristics 
of subcritical crack growth in the material. 

Figure 9 The stress corrosion index of the materials can be deter- 
mined from the load-deformation curve under constant displace- 
ment rate. The index is estimated by comparing the observed load- 
deformation curve with the calculated ones. The subcritical crack 
growth data can be, in principle, determined by a single experimental 
run of  the constant displacement rate test. (o)  Experimental points 
for (a) soda-lime glass, (b) Murata basalt, (c) Oshima granite. 
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6. Conclusions 
Relatively large scattering of the K-V relation was 
observed in several experimental runs of the load- 
relaxation method of double-torsion testing. This 
hysteresis in the K-V diagram can hardly be observed 
in the other two methods, the constant load and the 
constant displacement rate methods. In spite of 
doubts about the constant K, it was confirmed again 
that the stress intensity factor at the crack tip is 
independent of the crack length for double-torsion 
specimens. 

Although the advantage of the relaxation method 
has been noticed, the hysteresis of the data obtained 
by this method makes the result unreliable. The 
relaxation experiment should be carried out in com- 
bination with other methods. A theoretical calculation 
of the load-deformation curve under constant dis- 
placement rate can, in principle, estimate the stress 
corrosion index. Then only one experimental run of 
this method can give a verification of the results from 
the load-relaxation method of double-torsion testing. 
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